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SUMMARY 

Hamilton’s variational principle is applied to derive a system of conditions which expresses 
the balance of momentum and energy of an ideal gas across the selvadges” of bladed zones 
within the flow tracts of turbines. This system provides the background for a correct formulation of 
optimal design problems for turbines and compressors. The exposition follows the model of a large 
number of blades when the basic equations can be averaged over the azimuthal co-ordinate. 

An analysis is given of the obtained conditions and a computational algorithm described. 
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INTRODUCTION 

In the design of turbomachines, it has become traditional to consider two main approaches. 
The first is connected with calculation of flow under the assumption that the shape of the 
blades is prescribed (direct problem). The second requires determination of this shape for 
some given characteristics of a flow (inverse problem). Both approaches contain a factor 
which is usually thought of as prescribed by the designer according to experimental tests, 
analysis of prototypes, intuitive considerations etc. The designer commonly endeavours to 
suggest a turbine possessing an extremal value of some integral characteristic, e.g. its 
efficiency. 

Turbines now in action are already very effective, but further increases of efficiency are 
still very important because of their high power levels. 

Engineering recommendations obtained to date do not guarantee that more efficient 
designs do not exist. The complete solution to the problem may be obtained by the technique 
of optimal control theory. The controlling factor which was earlier being prescribed by a 
designer according to the considerations mentioned above would then be provided by only 
the requirement of maximality of the efficiency. 

The realization of this technique for an axisymmetric flow model within a turbine 
encounters the difficulty connected with the absence of continuity conditions across the 
boundaries dividing the zones of blades from those of a free stream within the flow tract. 
These conditions represent a necessary part of the analysis of the flow itself; in their absence, 
it is impossible to write down the corresponding conditions for the adjoint variables, that is 
to formulate the problem of optimal design of a flow tract itself. 

* The reviewer of this paper confesses to be unfamiliar with the term ‘selvadge(s)’ which appears frequently herein. 
Clearly, however, it (variously) means ‘boundary’, ‘edge’, ‘projection of edge line’ (meridional or axial), ‘locus of 
leading edges’, etc. 
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In what follows, we give the derivation of the mentioned system of conditions for a flow of 

Traditional conditions across the boundaries dividing different regions of a flow 
an ideal gas through a turbine posessing an infinite number of blades. 

usually suggest continuity of a meridional component of velocity. This is physically quite 
natural so long as we consider flows around some finite number of blades. However, in close 
vicinity of the boundaries of zones occupied by blades high velocity gradients arise because 
the flow has to change direction rapidly. Within the framework of the Lorentz scheme which 
is known to be connected with the infinitely dense system of blades, the regions of high 
gradients are imitated by the surfaces across which velocity suffers jumps.? For this scheme, 
the conservation laws do not necessitate continuity of the velocity vector. We give in what 
follows the derivation of the conditions which express the balance of momentum and energy 
across the boundaries. The procedure is based upon Hamilton's variational principle for the 
case of an ideal gas. The obtained conditions are discussed together with a corresponding 
computational algorithm. Alternative derivation of the kinematical condition was given in 
Reference 4 for the case of incompressible fluid; the question was also considered in 
Reference 5 .  

THE VARIATIONAL PRINCIPLE 

The variational description of a flow of an ideal gas has been given in much detail by 
Heriva16 (see also Reference 7). If the fluid particles are compelled to move along some 
prescribed family of surfaces, the variational principle is modified according to Hellinger.8 In 
References 7 and 8, however, no conditions were obtained along the surfaces dividing the 
regions where the motion of a fluid is described by different sets of equations. 

According to the mentioned principle, the functional 

I =  [ d t L  [$pc2-p(U+V)]dx dy dz  

possesses a stationary value under the additional constraints 

1 fl-p+divpc=O 
at  

C3S 
-+c * grad S = 0 
at 

%+c * grad x = 0 
at 

Here A denotes the moving fluid volume, c the absolute velocity vector, p the density, S 
the entropy, U =  U(p, S )  the internal energy and V =  V(x, y, z, t) the potential of the 
external forces. Within the Lorentz scheme, which will be followed throughout the paper, the 
flow surfaces are considered as coincident with those of the blades, both being represented 
by the equation x ( x ,  y, z, t )  = 0 in some fixed laboratory co-ordinate system. In cylindrical 

t A trivial example: the rotational flow (momentum of azimuthal velocity Rc,#O) entering a system of fixed 
rectilinear blades where Rc, = 0 according to the boundary conditions. The jump of Re, across the front boundary 
is accompanied by an impulsive reaction of the blades upon the flow. Here R is the radius and c, is the azimuthal 
component of velocity. 
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O i R  

Figure 1. Meridional projection of the surface dividing the 
zone of blades from that of a free stream 

co-ordinates R, cp, z ,  this last equation may be represented as (r = r(x, y, z ) )  

x(r, t )  = cp -(P(R, z )  -ot = 0 (3)  
where o designates the angular velocity of the shaft. 

Note that the last of equations (2) is prescribed only within the zone of blades ((+)-zone, 
Figure 1). This zone is assumed to be divided from the free stream region ((-)-zone, Figure 
1) by the surface of rotation 

F(r) = 0 (4) 
The intersection of this surface with a meridional plane is represented by the curve fq 
(Figure 1). 

Let a(a, b, c) be the Lagrange co-ordinates of a fluid particle defined as the initial values of 
its rectangular co-ordinates x, y, z. Let further t* = t*(a) be the time at which the particle 
a(a, b, c) intersects the boundary between the (+) and (-) regions. Equations (1) and (2) can 
then be rewritten in the form (where the dot denotes differentiation with respect to t for 
fixed values of a) 

Tp = Tp(a, t )  = Tp(a, 0) = po, 

S = S(a, t )  = S(a, O ) - S - ,  

S=S(a,  t)=S(a, t * ) = S + ,  t * s t s t k ;  

x(r(a, t ) ,  t )  = x(r(a, t*), t") = x+, 

0 s t s tk ; 

0s t <  t * ;  

t* s t s tk. 
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NECESSARY CONDITIONS OF STATIONARITY 

With the aid of the Lagrange multipliers a, P, y we construct an augmented functional 

and require its first variation to vanish, considering x(a, t), y(a, t ) ,  z(a, t ) ,  p(a, t ) ,  S(a, t )  as 
independent functional arguments. 

The Euler equations now take the form 

6 p :  T 

6s: p T [ ~ j P + P ] = O  

6x: - ( p T i ) +  - - - [ - c ) ( ~ c 2 - U - V -  
a a aT 
at a,b,c aa 

a V  ax 
ax ax 

+ pT-+ pTy- = 0 

and analogous equations corresponding to 6y, 62. In view of the thermodynamical relations 
(p-pressure, @--temperature 

the first two equations become 
P 
P 

$2- (U + v + a )  = - , p + 0 = 0 

The equations corresponding to Sx, 6y, 62, can simply be transformed to 

( 5 )  
dc 1 
- = -- grad p -grad V- y grad x 
dt P 

The last term on the right-hand side expresses the reaction upon the moving gas from the 
blades which perform the prescribed motion. 

If external forces are absent and if the motion is stationary and axisymmetric, then the 
projection of ( 5 )  along the azimuthal direction provides the relation y = -dRc,/dt, where c, 
is the cp-projection of the velocity c. 

The conditions along the boundary surfaces arise from surface integrals in the t ,  a, b, c- 
space in the expression for the first variation of the augmented functional. The corresponding 
terms are 

I, {p[(9,* 6x + iBYa 6y + 62) cos Nu + (gXb 6x 

+ BYb 6 y  + $BZb 62) cos Nb + (9% 6x +gay, 6y + gzc 62) cos Nc] 
(6) 

+ po(k 6~ + 9 6y + i 62) cos Nt + pO(h2 - U - V) cos Nt 6t *}? dX 
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Here 2 denotes the boundary surface in the four-dimensional space t ,  a, b, c given by 
t = t"(a, b, c ) ,  9,-, . . . denote the algebraic adjuncts of the elements xu, . . . in the Jacobian 
T ;  cos Nu, . . . are direction cosines of N relative to the axes a, . . . in the four-dimensional 
space. Observe that the dividing surface is fixed in the Euler space where it is represented by 
equation (4). Introducing the Lagrange co-ordinates and differentiating over t, we obtain 

F ~ U  +F& + F,C + ~ , l ~  = o 
where 

Fa = F,xu + Fyy, + Fzz, 

etc. 

at time t = t*(a) the relationship Fb = F, = 0 were valid; then it becomes evident that 
It would be convenient to introduce local co-ordinates a, b, c along the 2-surface such that 

and 

cos Nu = F,/J(F?+F:), 
cos Nt = F,/J(F: + F:) 

cos Nb = cos Nc = 0, 

The coefficient of Sx in (6)  in view of (7) and (8) is 

The factor before the square brackets is continuous across 2 because the same is true (see 
(7)) for F, and gXa = ybz, -z,y, (the last due to the choice of the co-ordinates a, b, c); 
d = -F,/F, represents the velocity of the three-dimensional surface-the projection of C 
onto the three-dimensional space a, b, c. The result is the same for the coefficients of Sy and 
62. 

The complete variation A x  at the 2-surface is connected with the variations ax, 6t" by the 
relationship 

and the same for Ay, Az .  The complete variations Ax, Ay, Az  are continuous across 2: 
A x  = 6x +X at" (10) 

(1 1) [Ax]: = [Ay]? = [Az]: = 0 

The (+)-limiting values Ax+, Ay,, Az, from the zone of blades (Figure 1) are subject to the 
constraints 

xx A x + x Y  A y + x z  A z + X t ( r S t * = O  
F, A x + F Y  A y + F z  A z = O ,  

the first of which express the condition that fluid cannot pass through a blade and the second 
is the matching conditions across the locus of leading edges. To take the latter constraints 
into account we introduce the additional Lagrange multipliers /CT/F,J(l+ d'), $T/F,J(l+ 
hi") and set the coefficients of Ax, Ay, A z  in (6) equal to zero, taking care of equations 
(9)-( 11) ( V F  = grad F )  

[p V F +  pcF,]?+/C V x +  $ V F  = 0 (13)  
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With the aid of 

+ V F  * c = V F  * c; V F = n  - IVFI 
aF aF F = -  =- 

t at la at Ir 

(here n denotes a normal to the meridional projection of the Z-surface;? see Figure l ) ,  we 
transform equation (13) to the form 

[pn+pc,c]T+h V x + p n = O  (15) 

C, = c - n, A = ~ / I v F ( ,  p = G/;/~vFI (16) 

where 

Owing to equations (10) and (12) the coefficient of at* in equation (6) is 

FaJ(1+U2) Ti at  1 
[-p(9&X + gyey + 9*a2) cos Nu - po(k2+ u + V) cos Nt]' + 

Taking equations (7) and (8) into account and keeping in mind that ax/&/, = --o (see 
equation (3)), we transform this last expression to 

Projection of equation (13) along the unit vector i, determines the multiplier i: 
i = -[p& RCJ+ (18) 

Substituting this expression into (17), we arrive at the condition 
+ [ $ c ~ + u + v + - - w R c u ]  P = 0  

P - 

which expresses continuity of the enthalpy of the relative motion across the boundary I: 
between (+) and (-) regions of the flow (the potential V of external forces is assumed 
continuous across I:). For the case of incompressible flow, equation (19) demonstrates 
continuity of energy in the relative motion. 

Conservation of mass of a fluid particle across Z means that$ 

Cwnl" = 0 (20) 

The (+)-limiting values of the hydrodynamic variables are subject to the condition (see (3)  

t Here and below we shall designate by X the dividing surface (4) in Eulerian space. 
$The variational principle (1)-(2) was based on the assumption that the volume element of a fluid particle equals 
dx dy dz;  to take the volume of the blades into account, we suggest that the fluid particle occupies some smaller 
volume T dx dy dz, T S 1. The parameter T will he treated as a known function of the co-ordinates. The variational 
principle will now he modified as follows: the first of equations (2) takes the form 

a(p-r)/at + div p ~ c  = 0 (2') 

and the volume element dx dy dz in equation (1) is substituted by T dx dy dz. The equations of motion and the 
conditions along the dividing surface are derived along the lines outlined above. Equations (5) and (19) still hold, 
equations (151, (20) are modified to 
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and the last of equations (2)) 

1 aa, + aa, 
cn-- c; = o  dx= -o +vx.  c+ = -0 + - c; -- 

dt R an 81 

which expresses the requirement that the fluid particles follow the surface of a blade (i.e. not 
penetrate it.) Here cI = c * 1 denotes the component of the velocity vector along the unit vector 
tangent to C in the meridional plane (see Figure 1); the function cp= a(&?, z) describes the 
surface of a blade in a co-ordinate system rotating with the angular velocity o. 

Equation (15), (19) and (20) represent the complete system of conditions valid along the 
surface dividing the zone of blades from that of a free stream.? For the case of an 
incompressible fluid, this system is complete; for a compressible fluid, it should be com- 
plemented by some additional prescriptions, concerning e.g. the forces acting upon a fluid 
particle on C. 

DISCUSSION 

Eliminating A and p from equation (15), we obtain 

[clt  - (nxVx) = O  

or transforming the vector product, 

aa, 
81 

[c[]++-"Rc,]?=O 

The jump [cJ? characterizes the discontinuity of the meridional velocity at the points of 
C.$ It is also seen from equation (22) that the discontinuity disappears if the selvadge of a 
blade is disposed within the meridional plane: a@/aE = 0; the jump [Q]? also vanishes when the 
azimuthal velocity c, is continuous across 

To illustrate the physical meaning of parameters A and p, we consider an elementary fluid 
volume d O  in the vicinity of the entrance selvadge, this volume being restricted by two close 
cross-sections 1 and 2 and two close streamlines separated by the distance dl. Applying 
conservation of momentum in the Euler form? we find that the blades produce the reactive 
inertial force dQ upon the fluid volume d o ,  this force being equal to (assume grad V=O, 

dQ = [pn + pc,,c]I dX (23) 

: [cull  = 0.0 

7 = 1) 

where dC = 2.irR dl. Comparison with equation (15) shows that 

(24) d Q  = -(A O x  + pn) dX 

and the reactive force applied to d O  along the selvadge turns out to be the sum of two 
forces: the force -A V x  dC which is normal to the surface of a blade, and the force -pn dC 

t In the absence of blades (A = f~ = 0), the obtained conditions express the traditional conservation laws across shock 
waves. 
$ If we introduce the parameter T (see comment in an earlier footnote), then equation (22) still holds. 

velocity in the equations describing axisymmetric incompressible flow within the zone of blades. 
In Reference 4, equation (22) was obtained due to formal consideration of 8-singularities of derivatives of the 
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disposed within the meridional plane. The term -A Vx d 2  expresses the reaction from the 
prescribed surface of a blade upon the fluid particle crossing C. The value of A in accordance 
with equations (14), (16) and (18) is given by 

A = -pcn[Rc,]? (25) 

The term - p n  dC in equation (24) represents the reactive force produced by the selvadge 
itself, this force being applied to fix the position of the 2-surface in space. To determine the 
value of p, we project equation (15) along the n-direction; in view of equations (3) and (25) 
we obtain 

For the incompressible case p = const., U = const., [c,]? = 0; this last equation can be 
modified to (see equations (19), (21) and (22)) 

p = (26) 

THE COMPUTATIONAL ALGORITHM 

As an example we shall consider the numerical algorithm of the solution of the inverse 
problem for the incompressible flow in a turbine. It will be assumed that within the bladed 
zones, the field of angular momentum, Rc,, is prescribed. The problem will be formulated as 
follows: given the flow rate J/*, the angular velocity w of a shaft, the tangents tg ?IAa = cJcR 
at the entrance and tg yIBC = CJC, at the exit section of a turbine, the entrance distributions 
E(J/)IAa, Rc,(J/)I,, and the fields Rc, of moments within the zones 9T2, 9T4 occupied by 
blades (Figure 2), determine the parameters of the flow together with the geometric 
characteristics of the blades. The flow is assumed axisymmetric, and the exit selvadges of the 
blades disposed within the meridional plane; the angular momentum Rc, is also assumed 
continuous across the exit selvadges. 

To construct the algorithm with the aid of equations (19), (20) and (22), we use some of 
the results of Reference 2, in which the problem of blade design for a radial-axial turbine in 
a rotational flow was considered, the meridional velocity component being assumed 
continuous. 

We take the polar cylindrical co-ordinates r, 0 (Figure 2) and introduce the stream 
function 

c=- -  1 a4 
rRr 80 c, = Rr ar ’ 

where the parameter T is determined as described in a footnote earlier in the paper. 
Equations (2) and (5 )  are now rewritten in the form 

1 
R r  

div 2 04 = F1 
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Figure 2. Meridional projection of a flow tract, is a free zone 
(inlet), a2 is the rotor (or stator) zone, 9J3 is a free zone between 
the blades, a4 is the stator (or rotor) zone, and 4, is a free zone 

(wake) 

where 

Here E(+)  and I ($ )  denote Bernoulli constants for absolute and relative motions respec- 
tively. The parameter r will be assumed continuous and equal to unity at the selvadges of the 
blades. 

We now introduce new independent variables 5, q so as to transform the initial region into 
a unit square, the curvilinear selvadges going over to the sections of the straight lines 
5 = const. (Reference 2). 

Nodes of the computational grid in the 6, q-plane will be chosen as shown on Figure 3 .  In 
the close neighbourhood of the entrance selvadge (t=.$) of the blades, consider two 
fictitious straight lines 5 = and 
5 = 
to the zone of blades. 

the blades: 

and 5 = which are formally coincident with 5 = 
The line 6 = will be related to the free rotational flow zone, and the line 5 = 

Equation (20) expresses continuity of the stream function across the entrance selvadges of 

J,{j = +Lj (30) 



308 

C 

D 

K. A. L.URIE, A. V. FEDOROV AND V. I. KLIMOVICH 

Figure 3. Construction of the computational scheme 

At  each inner node of the grid except the entrance selvadges, equation (27) is replaced by 
the difference equation in which derivatives are approximated by central difference quotients 

For the nodes disposed at the entrance selvadges, the corresponding difference equations will 
be 

I J+1  J + 1  

Acj = 2 Qm,n+m,n + Qt+i,n+lti+i,nf(rRF;)i,J = 0 
(32) m = i - l  n=j-1  n=j--l 

J + 1  l i l  I t 1  

Alj = C, Qt- l ,n+Ll ,n+ Z: Z: Qm,n+m,n + (rRF;)l,j = 0 
n s J - l  m=l nZj-1 

Equation (22) is also approximated by a difference equation which is transformed to 

Here h denotes the difference step along the c-co-ordinate, and &I the polar angle 8 at the 
entrance selvadge. Since the flow rate through the channel is prescribed, we have at the walls 

+(t, 1) = +*, +(S, 0)  = 0 (34) 

Equations (3 1)-(33) together with the boundary conditions provide a complete system of 
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linear algebraic equations. As in Reference 2, this system is solved by the iterative scheme 
@??l= @?.- 1,l tA* 112 

L J  

where t is an iteration parameter. At  the entrance selvadges, the procedure is modified as 
follows 

Now, in view of equation (30), we obtain 

n-1-1 n=1-1 

(36) 
Comparing equations (36) and (33) and taking equation (34) into account, we obtain 

I t 1  J+1 

C (Q[+l,n + Qt-l,n)hti-l,n= (E~RFII?)I,~ - C Qt-l,nGl,n } (37) n = J - l  n=J-1 

h-(tL+,, 1) = h-(tL+,, 0) = 0 
where 

’l“r1,l = +1+1,1- @[+l,J 

The algebraic system (37) is solved by a standard technique which provides the values of 
which are used in the iterative scheme (35). 

0 O,{ 0,2 0,3 0,4 0,s 0,s + R 

Figure 4. Distribution of the angular momentum Rc, within the 
working shaft of a turbine 
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Figure 5. The lines JI = const 

The values of cf, are determined from equation (28) which is solved by the method of 
characteristics with the use of the boundary condition for cf, at the exit selvadges of the 
blades.’ 

The described algorithm was used to calculate the flow parameters within the flow tract of 
a turbine for the prescribed field of Rc, shown in Figure 4. The inlet guide vanes were 
represented by prescribing the momentum Rc, at the line 1, : Rc,(JI)Il3 = 0.7451 + 2.99544. 
The boundary conditions for the stream function at l3 and l6 were taken in the form 
tg ? I r ,  = 0, tg ?I1, = 0.5045 ( R  -0.005); the parameter T was set equal to unity. The results are 
shown in Figure 5 (the form of a flow tract shown in Figure 2), for 4” = 0-2387, w = 
9.95, E,(+!J) = Const. 
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